Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 686
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(18): e2320609121, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38652739

RESUMEN

Regulation of subcellular messenger (m)RNA localization is a fundamental biological mechanism, which adds a spatial dimension to the diverse layers of post-transcriptional control of gene expression. The cellular compartment in which mRNAs are located may define distinct aspects of the encoded proteins, ranging from production rate and complex formation to localized activity. Despite the detailed roles of localized mRNAs that have emerged over the past decades, the identity of factors anchoring mRNAs to subcellular domains remains ill-defined. Here, we used an unbiased method to profile the RNA-bound proteome in migrating endothelial cells (ECs) and discovered that the plasma membrane (PM)-associated scaffolding protein A-kinase anchor protein (AKAP)12 interacts with various mRNAs, including transcripts encoding kinases with Actin remodeling activity. In particular, AKAP12 targets a transcript coding for the kinase Abelson Tyrosine-Protein Kinase 2 (ABL2), which we found to be necessary for adequate filopodia formation and angiogenic sprouting. Moreover, we demonstrate that AKAP12 is necessary for anchoring ABL2 mRNA to the PM and show that in the absence of AKAP12, the translation efficiency of ABL2 mRNA is reduced. Altogether, our work identified a unique post-transcriptional function for AKAP12 and sheds light into mechanisms of spatial control of gene expression.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Biosíntesis de Proteínas , ARN Mensajero , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Humanos , Animales , Células Endoteliales/metabolismo , Seudópodos/metabolismo , Seudópodos/genética , Ratones , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Membrana Celular/metabolismo , Movimiento Celular
2.
Commun Biol ; 7(1): 345, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509283

RESUMEN

The scaffolding A-kinase anchoring protein 150 (AKAP150) is critically involved in kinase and phosphatase regulation of synaptic transmission/plasticity, and neuronal excitability. Emerging evidence also suggests that AKAP150 signaling may play a key role in brain's processing of rewarding/aversive experiences, however its role in the lateral habenula (LHb, as an important brain reward circuitry) is completely unknown. Using whole cell patch clamp recordings in LHb of male wildtype and ΔPKA knockin mice (with deficiency in AKAP-anchoring of PKA), here we show that the genetic disruption of PKA anchoring to AKAP150 significantly reduces AMPA receptor-mediated glutamatergic transmission and prevents the induction of presynaptic endocannabinoid-mediated long-term depression in LHb neurons. Moreover, ΔPKA mutation potentiates GABAA receptor-mediated inhibitory transmission while increasing LHb intrinsic excitability through suppression of medium afterhyperpolarizations. ΔPKA mutation-induced suppression of medium afterhyperpolarizations also blunts the synaptic and neuroexcitatory actions of the stress neuromodulator, corticotropin releasing factor (CRF), in mouse LHb. Altogether, our data suggest that AKAP150 complex signaling plays a critical role in regulation of AMPA and GABAA receptor synaptic strength, glutamatergic plasticity and CRF neuromodulation possibly through AMPA receptor and potassium channel trafficking and endocannabinoid signaling within the LHb.


Asunto(s)
Hormona Liberadora de Corticotropina , Habénula , Animales , Masculino , Ratones , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Endocannabinoides , Habénula/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología
3.
Circ Res ; 134(8): 1006-1022, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38506047

RESUMEN

BACKGROUND: In heart failure, signaling downstream the ß2-adrenergic receptor is critical. Sympathetic stimulation of ß2-adrenergic receptor alters cAMP (cyclic adenosine 3',5'-monophosphate) and triggers PKA (protein kinase A)-dependent phosphorylation of proteins that regulate cardiac function. cAMP levels are regulated in part by PDEs (phosphodiesterases). Several AKAPs (A kinase anchoring proteins) regulate cardiac function and are proposed as targets for precise pharmacology. AKAP12 is expressed in the heart and has been reported to directly bind ß2-adrenergic receptor, PKA, and PDE4D. However, its roles in cardiac function are unclear. METHODS: cAMP accumulation in real time downstream of the ß2-adrenergic receptor was detected for 60 minutes in live cells using the luciferase-based biosensor (GloSensor) in AC16 human-derived cardiomyocyte cell lines overexpressing AKAP12 versus controls. Cardiomyocyte intracellular calcium and contractility were studied in adult primary cardiomyocytes from male and female mice overexpressing cardiac AKAP12 (AKAP12OX) and wild-type littermates post acute treatment with 100-nM isoproterenol (ISO). Systolic cardiac function was assessed in mice after 14 days of subcutaneous ISO administration (60 mg/kg per day). AKAP12 gene and protein expression levels were evaluated in left ventricular samples from patients with end-stage heart failure. RESULTS: AKAP12 upregulation significantly reduced total intracellular cAMP levels in AC16 cells through PDE8. Adult primary cardiomyocytes from AKAP12OX mice had significantly reduced contractility and impaired calcium handling in response to ISO, which was reversed in the presence of the selective PDE8 inhibitor (PF-04957325). AKAP12OX mice had deteriorated systolic cardiac function and enlarged left ventricles. Patients with end-stage heart failure had upregulated gene and protein levels of AKAP12. CONCLUSIONS: AKAP12 upregulation in cardiac tissue is associated with accelerated cardiac dysfunction through the AKAP12-PDE8 axis.


Asunto(s)
Cardiopatías , Insuficiencia Cardíaca , Humanos , Masculino , Ratones , Femenino , Animales , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Regulación hacia Arriba , Calcio/metabolismo , Miocitos Cardíacos/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Isoproterenol/farmacología , Cardiopatías/metabolismo , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Receptores Adrenérgicos/metabolismo , Proteínas de Ciclo Celular/genética , 3',5'-AMP Cíclico Fosfodiesterasas/genética , 3',5'-AMP Cíclico Fosfodiesterasas/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(13): e2314947121, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38513099

RESUMEN

Protein kinase A (PKA) is a ubiquitous, promiscuous kinase whose activity is specified through subcellular localization mediated by A-kinase anchoring proteins (AKAPs). PKA has complex roles as both an effector and a regulator of integrin-mediated cell adhesion to extracellular matrix (ECM). Recent observations demonstrate that PKA is an active component of focal adhesions (FA), suggesting the existence of one or more FA AKAPs. Using a promiscuous biotin ligase fused to PKA type-IIα regulatory (RIIα) subunits and subcellular fractionation, we identify the archetypal FA protein talin1 as an AKAP. Talin is a large, mechanosensitive scaffold that directly links integrins to actin filaments and promotes FA assembly by recruiting additional components in a force-dependent manner. The rod region of talin1 consists of 62 α-helices bundled into 13 rod domains, R1 to R13. Direct binding assays and NMR spectroscopy identify helix41 in the R9 subdomain of talin as the PKA binding site. PKA binding to helix41 requires unfolding of the R9 domain, which requires the linker region between R9 and R10. Experiments with single molecules and in cells manipulated to alter actomyosin contractility demonstrate that the PKA-talin interaction is regulated by mechanical force across the talin molecule. Finally, talin mutations that disrupt PKA binding also decrease levels of total and phosphorylated PKA RII subunits as well as phosphorylation of VASP, a known PKA substrate, within FA. These observations identify a mechanically gated anchoring protein for PKA, a force-dependent binding partner for talin1, and a potential pathway for adhesion-associated mechanotransduction.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Adhesiones Focales , Adhesiones Focales/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Talina/metabolismo , Mecanotransducción Celular , Adhesión Celular/fisiología , Integrinas/metabolismo , Unión Proteica , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
5.
Sci Adv ; 10(8): eadl1258, 2024 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-38381834

RESUMEN

Adrenal Cushing's syndrome is a disease of cortisol hypersecretion often caused by mutations in protein kinase A catalytic subunit (PKAc). Using a personalized medicine screening platform, we discovered a Cushing's driver mutation, PKAc-W196G, in ~20% of patient samples analyzed. Proximity proteomics and photokinetic imaging reveal that PKAcW196G is unexpectedly distinct from other described Cushing's variants, exhibiting retained association with type I regulatory subunits (RI) and their corresponding A kinase anchoring proteins (AKAPs). Molecular dynamics simulations predict that substitution of tryptophan-196 with glycine creates a 653-cubic angstrom cleft between the catalytic core of PKAcW196G and type II regulatory subunits (RII), but only a 395-cubic angstrom cleft with RI. Endocrine measurements show that overexpression of RIα or redistribution of PKAcW196G via AKAP recruitment counteracts stress hormone overproduction. We conclude that a W196G mutation in the kinase catalytic core skews R subunit selectivity and biases AKAP association to drive Cushing's syndrome.


Asunto(s)
Síndrome de Cushing , Humanos , Síndrome de Cushing/genética , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Transducción de Señal , Dominio Catalítico , Sesgo
6.
Heart Surg Forum ; 27(1): E028-E037, 2024 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-38286648

RESUMEN

BACKGROUND: This study mainly investigated the mechanism and effects of AKAP1 in renal patients with acute heart failure (AHF). METHODS: Patients with renal patients with AHF and normal volunteers were collected. The left anterior descending arteries (LAD) of mice were ligated to induce myocardial infarction. RESULTS: AKAP1 messenger RNA (mRNA) expression was found to be down-regulated in renal patients with AHF. The serum levels of AKAP1 mRNA expression were negatively correlated with collagen I/III in patients. AKAP1 mRNA and protein expression in the heart tissue of mice with AHF were also found to be down-regulated in a time-dependent manner. Short hairpin (Sh)-AKAP1 promotes AHF in a mouse model. AKAP1 up-regulation reduces reactive oxygen species (ROS)-induced oxidative stress in an In Vitro model. AKAP1 up-regulation also reduces ROS-induced lipid peroxidation ferroptosis in an In Vitro model. AKAP1 induces NDUFS1 expression to increase GPX4 activity levels. AKAP1 protein interlinked with the NDUFS1 protein. Up-regulation of the AKAP1 gene reduced NDUFS1 ubiquitination, while down-regulation of the AKAP1 gene increased NDUFS1 ubiquitination in a model. In vivo imaging showed that the sh-AKAP1 virus reduced NDUFS1 expression in the heart of a mouse model. CONCLUSIONS: AKAP1 reduced ROS-induced lipid peroxidation ferroptosis through the inhibition of ubiquitination of NDUFS by mitochondrial damage in model of renal patients with AHF, suggest a novel target for AHF treatment.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Ferroptosis , Insuficiencia Cardíaca , Animales , Humanos , Ratones , Insuficiencia Cardíaca/genética , Miocitos Cardíacos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , ARN Mensajero , Proteínas de Anclaje a la Quinasa A/metabolismo , NADH Deshidrogenasa/metabolismo
7.
Arch Biochem Biophys ; 752: 109882, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38211639

RESUMEN

G protein-coupled receptor 30 (GPR30), also named G protein-coupled estrogen receptor (GPER), and the ß1-adrenergic receptor (ß1AR) are G protein-coupled receptors (GPCR) that are implicated in breast cancer progression. Both receptors contain PSD-95/Discs-large/ZO-1 homology (PDZ) motifs in their C-terminal tails through which they interact in the plasma membrane with membrane-associated guanylate kinase (MAGUK) scaffold proteins, and in turn protein kinase A anchoring protein (AKAP) 5. GPR30 constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. We hypothesized that this inhibition is a consequence of a plasma membrane complex of these receptors. Using co-immunoprecipitation, confocal immunofluorescence microscopy, and bioluminescence resonance energy transfer (BRET), we show that GPR30 and ß1AR reside in close proximity in a plasma membrane complex when transiently expressed in HEK293. Deleting the GPR30 C-terminal PDZ motif (-SSAV) does not interfere with the receptor complex, indicating that the complex is not PDZ-dependent. MCF7 breast cancer cells express GPR30, ß1AR, MAGUKs, and AKAP5 in the plasma membrane, and co-immunoprecipitation revealed that these proteins exist in close proximity also under native conditions. Furthermore, expression of GPR30 in MCF7 cells constitutively and PDZ-dependently inhibits ß1AR-mediated cAMP production. AKAP5 also inhibits ß1AR-mediated cAMP production, which is not additive with GPR30-promoted inhibition. These results argue that GPR30 and ß1AR form a PDZ-independent complex in MCF7 cells through which GPR30 constitutively and PDZ-dependently inhibits ß1AR signaling via receptor interaction with MAGUKs and AKAP5.


Asunto(s)
Neoplasias de la Mama , Proteínas Quinasas Dependientes de AMP Cíclico , Femenino , Humanos , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al GTP/metabolismo , Guanilato-Quinasas , Células HEK293 , Células MCF-7 , Receptores Adrenérgicos/metabolismo , Receptores de Estrógenos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
8.
Oncogene ; 43(1): 22-34, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37875657

RESUMEN

PTEN loss, one of the most frequent mutations in prostate cancer (PC), is presumed to drive disease progression through AKT activation. However, two transgenic PC models with Akt activation plus Rb loss exhibited different metastatic development: Pten/RbPE:-/- mice produced systemic metastatic adenocarcinomas with high AKT2 activation, whereas RbPE:-/- mice deficient for the Src-scaffolding protein, Akap12, induced high-grade prostatic intraepithelial neoplasias and indolent lymph node dissemination, correlating with upregulated phosphotyrosyl PI3K-p85α. Using PC cells isogenic for PTEN, we show that PTEN-deficiency correlated with dependence on both p110ß and AKT2 for in vitro and in vivo parameters of metastatic growth or motility, and with downregulation of SMAD4, a known PC metastasis suppressor. In contrast, PTEN expression, which dampened these oncogenic behaviors, correlated with greater dependence on p110α plus AKT1. Our data suggest that metastatic PC aggressiveness is controlled by specific PI3K/AKT isoform combinations influenced by divergent Src activation or PTEN-loss pathways.


Asunto(s)
Neoplasia Intraepitelial Prostática , Neoplasias de la Próstata , Humanos , Masculino , Ratones , Animales , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas/metabolismo , Neoplasias de la Próstata/patología , Fosfohidrolasa PTEN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo
9.
Adv Sci (Weinh) ; 11(6): e2305068, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38088586

RESUMEN

Primary cilia are conserved organelles in most mammalian cells, acting as "antennae" to sense external signals. Maintaining a physiological cilium length is required for cilium function. MicroRNAs (miRNAs) are potent gene expression regulators, and aberrant miRNA expression is closely associated with ciliopathies. However, how miRNAs modulate cilium length remains elusive. Here, using the calcium-shock method and small RNA sequencing, a miRNA is identified, namely, miR-669a-5p, that is highly expressed in the cilia-enriched noncellular fraction. It is shown that miR-669a-5p promotes cilium elongation but not cilium formation in cultured cells. Mechanistically, it is demonstrated that miR-669a-5p represses ras-GTPase-activating protein SH3-domain-binding protein (G3BP) expression to inhibit histone deacetylase 6 (HDAC6) expression, which further upregulates A-kinase anchor protein 12 (AKAP12) expression. This effect ultimately blocks cilia disassembly and leads to greater cilium length, which can be restored to wild-type lengths by either upregulating HDAC6 or downregulating AKAP12. Collectively, these results elucidate a previously unidentified miR-669a-5p/G3BP/HDAC6/AKAP12 signaling pathway that regulates cilium length, providing potential pharmaceutical targets for treating ciliopathies.


Asunto(s)
Ciliopatías , MicroARNs , Animales , Histona Desacetilasa 6/genética , Histona Desacetilasa 6/metabolismo , Cilios/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Ciliopatías/metabolismo , Mamíferos/metabolismo
10.
FEBS Lett ; 598(4): 457-476, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38140814

RESUMEN

Cilia are microtubule-based sensory organelles present in a number of eukaryotic cells. Mutations in the genes encoding ciliary proteins cause ciliopathies in humans. A-kinase anchoring proteins (AKAPs) tether ciliary signaling proteins such as protein kinase A (PKA). The dimerization and docking domain (D/D) on the RIIα subunit of PKA interacts with AKAPs. Here, we show that AKAP240 from the central-pair microtubules of Chlamydomonas reinhardtii cilia uses two C-terminal amphipathic helices to bind to its partner FAP174, an RIIα-like protein with a D/D domain at the N-terminus. Co-immunoprecipitation using anti-FAP174 antibody with an enriched central-pair microtubule fraction isolated seven interactors whose mass spectrometry analysis revealed proteins from the C2a (FAP65, FAP70, and FAP147) and C1b (CPC1, HSP70A, and FAP42) microtubule projections and FAP75, a protein whose sub-ciliary localization is unknown. Using RII D/D and FAP174 as baits, we identified two additional AKAPs (CPC1 and FAP297) in the central-pair microtubules.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Chlamydomonas reinhardtii , Humanos , Proteínas de Anclaje a la Quinasa A/química , Proteínas de Anclaje a la Quinasa A/metabolismo , Cilios/metabolismo , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Microtúbulos/metabolismo
11.
Mol Pain ; 19: 17448069231222406, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38073552

RESUMEN

Changes in sensory afferent activity contribute to the transition from acute to chronic pain. However, it is unlikely that a single sensory receptor is entirely responsible for persistent pain. It is more probable that extended changes to multiple receptor proteins expressed by afferent neurons support persistent pain. A-Kinase Anchoring Protein 79/150 (AKAP) is an intracellular scaffolding protein expressed in sensory neurons that spatially and temporally coordinates signaling events. Since AKAP scaffolds biochemical modifications of multiple TRP receptors linked to pain phenotypes, we probed for other ionotropic receptors that may be mediated by AKAP and contribute to persistent pain. Here, we identify a role for AKAP modulation of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid Receptor (AMPA-R) functionality in sensory neurons. Pharmacological manipulation of distinct AMPA-R subunits significantly reduces persistent mechanical hypersensitivity observed during hyperalgesic priming. Stimulation of both protein kinases C and A (PKC, PKA, respectively) modulate AMPA-R subunit GluR1 and GluR2 phosphorylation and surface expression in an AKAP-dependent manner in primary cultures of DRG neurons. Furthermore, AKAP knock out reduces sensitized AMPA-R responsivity in DRG neurons. Collectively, these data indicate that AKAP scaffolds AMPA-R subunit organization in DRG neurons that may contribute to the transition from acute-to-chronic pain.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Dolor Crónico , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico , Células Receptoras Sensoriales/metabolismo , Transducción de Señal
12.
Diabetes Res Clin Pract ; 206: 111012, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37967586

RESUMEN

BACKGROUND: Diabetes mellitus erectile dysfunction (DMED) is one of common complications of diabetes. We aimed to investigate the potential efficacy of methyl protodioscin (MPD) in DMED and explored the underlying mechanism. METHODS: Diabetic mice were induced by streptozotocin, while vascular endothelial cells (VECs) and vascular smooth muscle cells (VSMCs) were stimulated with high glucose. MPD was administrated in vitro and in vivo to verify its efficacy on DMED. The interaction of c-Myc and AKAP12 was determined by luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS: c-Myc and AKAP12 were upregulated in penile tissues in DMED mice. In high glucose-stimulated VSMCs or VECs, MPD intervention enhanced cell viability, inhibited apoptosis, decreased c-Myc and AKAP12, as well as elevated p-eNOS Ser1177. MPD-induced apoptosis inhibition, AKAP12 reduction and p-eNOSSer1177 elevation were reversed by AKAP12 overexpression. c-Myc functioned as a positive regulator of AKAP12. Overexpression of c-Myc reversed the effects induced by MPD in vitro, which was neutralized by AKAP12 silencing. MPD ameliorated erectile function in diabetic mice via inhibiting AKAP12. CONCLUSIONS: MPD improved erectile dysfunction in streptozotocin-caused diabetic mice by regulating c-Myc/AKAP12 pathway, indicating that MPD could be developed as a promising natural agent for the treatment of DMED.


Asunto(s)
Diabetes Mellitus Experimental , Disfunción Eréctil , Masculino , Ratas , Humanos , Ratones , Animales , Disfunción Eréctil/etiología , Disfunción Eréctil/genética , Diabetes Mellitus Experimental/metabolismo , Regulación hacia Abajo , Células Endoteliales/metabolismo , Estreptozocina , Ratas Sprague-Dawley , Glucosa , Proteínas de Ciclo Celular/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo
13.
Mol Cell Probes ; 72: 101939, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37879503

RESUMEN

Esophageal squamous cell carcinoma (ESCC) consistently ranks as one of the most challenging variants of squamous cell carcinomas, primarily due to the lack of effective early detection strategies. We herein aimed to elucidate the underlying mechanisms and biological role associated with A-kinase anchoring protein 12 (AKAP12) in the context of ESCC. Bioinformatic analysis had revealed significantly lower expression level of AKAP12 in ESCC tissue samples than in their non-cancerous counterparts. To gain deeper insights into the potential role of AKAP12 in the progression of ESCC, we conducted a single-gene set enrichment analysis of AKAP12 on ESCC datasets. Our findings suggested that AKAP12 exhibits functions inhibiting cell cycle progression, tumor proliferation, and epithelial-mesenchymal transition. To further validate our findings, we subjected ESCC cell lines to AKAP12 overexpression using CRISPR/Cas9-SAM. In vitro analyses demonstrated that increased expression of AKAP12 significantly reduced cell proliferation, migration, and cell cycle progression. Simultaneously, genes associated with this biological role undergo corresponding regulatory shifts. These observations provided valuable insights into the biological role played by AKAP12 in ESCC progression. In summary, AKAP12 shows promise as a new potential biomarker for early ESCC diagnosis, offering potential advantages for subsequent therapeutic intervention and disease management.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Línea Celular Tumoral , Carcinoma de Células Escamosas/patología , Transducción de Señal/genética , Ciclo Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
14.
Proc Natl Acad Sci U S A ; 120(41): e2204700120, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37796990

RESUMEN

Neurobiological consequences of traumatic brain injury (TBI) result from a complex interplay of secondary injury responses and sequela that mediates chronic disability. Endothelial cells are important regulators of the cerebrovascular response to TBI. Our work demonstrates that genetic deletion of endothelial cell (EC)-specific EPH receptor A4 (EphA4) using conditional EphA4f/f/Tie2-Cre and EphA4f/f/VE-Cadherin-CreERT2 knockout (KO) mice promotes blood-brain barrier (BBB) integrity and tissue protection, which correlates with improved motor function and cerebral blood flow recovery following controlled cortical impact (CCI) injury. scRNAseq of capillary-derived KO ECs showed increased differential gene expression of BBB-related junctional and actin cytoskeletal regulators, namely, A-kinase anchor protein 12, Akap12, whose presence at Tie2 clustering domains is enhanced in KO microvessels. Transcript and protein analysis of CCI-injured whole cortical tissue or cortical-derived ECs suggests that EphA4 limits the expression of Cldn5, Akt, and Akap12 and promotes Ang2. Blocking Tie2 using sTie2-Fc attenuated protection and reversed Akap12 mRNA and protein levels cortical-derived ECs. Direct stimulation of Tie2 using Vasculotide, angiopoietin-1 memetic peptide, phenocopied the neuroprotection. Finally, we report a noteworthy rise in soluble Ang2 in the sera of individuals with acute TBI, highlighting its promising role as a vascular biomarker for early detection of BBB disruption. These findings describe a contribution of the axon guidance molecule, EphA4, in mediating TBI microvascular dysfunction through negative regulation of Tie2/Akap12 signaling.


Asunto(s)
Barrera Hematoencefálica , Lesiones Traumáticas del Encéfalo , Receptor EphA4 , Animales , Ratones , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Barrera Hematoencefálica/metabolismo , Lesiones Traumáticas del Encéfalo/genética , Lesiones Traumáticas del Encéfalo/metabolismo , Proteínas de Ciclo Celular/metabolismo , Células Endoteliales/metabolismo , Ratones Noqueados , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Receptor EphA4/genética , Receptor EphA4/metabolismo
15.
Acta Haematol ; 146(6): 473-480, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37605556

RESUMEN

INTRODUCTION: The aim of this study was to develop a prognostic model for chronic lymphocytic leukemia (CLL). METHODS: GEO2R was used to retrieve the gene expression data of CLL and normal B cells from the Gene Expression Omnibus (GEO; GSE22529 and GSE50006 datasets) database. Practical Extraction and Report Language was used to extract the gene expression and overall survival (OS) data of CLL patients from the Chronic Lymphocytic Leukemia - ES (CLLE-ES) project in the International Cancer Genome Consortium (ICGC) database. Cox regression with Lasso was used to create and validate a prognostic model for CLL. RESULTS: A total of 267 genes exhibited differential expression between CLL and normal B cells. Cox univariate analysis identified 14 DEGs that correlated with OS. Lasso multivariate evaluation demonstrated that AKAP12 and IGFBP4 are independent prognostic factors for CLL. Kaplan-Meier survival analysis revealed a significant association between the estimated risk score and survival. The area under the receiver operating characteristic curve was calculated to be 0.97, indicating high predictive accuracy. In addition, high AKAP12 and IGFBP4 risk scores were associated with the high incidence of trisomy 12q. CONCLUSION: Taken together, AKAP12 and IGFBP4 are independent prognostic factors for CLL.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Estimación de Kaplan-Meier , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/metabolismo , Pronóstico
16.
Clin Transl Oncol ; 25(11): 3263-3276, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37326825

RESUMEN

BACKGROUND: Cancer stem cells (CSCs) have unique biological characteristics, including tumorigenicity, immortality, and chemoresistance. Colorectal CSCs have been identified and isolated from colorectal cancers by various methods. AKAP12, a scaffolding protein, is considered to act as a potential suppressor in colorectal cancer, but its role in CSCs remains unknown. In this study, we investigated the function of AKAP12 in Colorectal CSCs. METHODS: Herein, Colorectal CSCs were enriched by cell culture with a serum-free medium. CSC-associated characteristics were evaluated by Flow cytometry assay and qPCR. AKAP12 gene expression was regulated by lentiviral transfection assay. The tumorigenicity of AKAP12 in vivo by constructing a tumor xenograft model. The related pathways were explored by qPCR and Western blot. RESULTS: The depletion of AKAP12 reduced colony formation, sphere formation, and expression of stem cell markers in colorectal cancer cells, while its knockdown decreased the volume and weight of tumor xenografts in vivo. AKAP12 expression levels also affected the expression of stemness markers associated with STAT3, potentially via regulating the expression of protein kinase C. CONCLUSION: This study suggests Colorectal CSCs overexpress AKAP12 and maintain stem cell characteristics through the AKAP12/PKC/STAT3 pathway. AKAP12 may be an important therapeutic target for blocking the development of colorectal cancer in the field of cancer stem cells.


Asunto(s)
Neoplasias Colorrectales , Humanos , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Fenotipo , Células Madre Neoplásicas/patología , Proliferación Celular , Proteínas de Ciclo Celular/metabolismo , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Factor de Transcripción STAT3/genética
17.
Cells ; 12(11)2023 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-37296658

RESUMEN

A-Kinase anchoring protein 1 (AKAP1) is a multifunctional mitochondrial scaffold protein that regulates mitochondrial dynamics, bioenergetics, and calcium homeostasis by anchoring several proteins, including protein kinase A, to the outer mitochondrial membrane. Glaucoma is a complex, multifactorial disease characterized by a slow and progressive degeneration of the optic nerve and retinal ganglion cells (RGCs), ultimately resulting in vision loss. Impairment of the mitochondrial network and function is linked to glaucomatous neurodegeneration. Loss of AKAP1 induces dynamin-related protein 1 dephosphorylation-mediated mitochondrial fragmentation and loss of RGCs. Elevated intraocular pressure triggers a significant reduction in AKAP1 protein expression in the glaucomatous retina. Amplification of AKAP1 expression protects RGCs from oxidative stress. Hence, modulation of AKAP1 could be considered a potential therapeutic target for neuroprotective intervention in glaucoma and other mitochondria-associated optic neuropathies. This review covers the current research on the role of AKAP1 in the maintenance of mitochondrial dynamics, bioenergetics, and mitophagy in RGCs and provides a scientific basis to identify and develop new therapeutic strategies that could protect RGCs and their axons in glaucoma.


Asunto(s)
Glaucoma , Células Ganglionares de la Retina , Humanos , Células Ganglionares de la Retina/metabolismo , Proteínas de Anclaje a la Quinasa A/metabolismo , Neuroprotección , Glaucoma/metabolismo , Retina/metabolismo
18.
Mol Cell Proteomics ; 22(6): 100564, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37146716

RESUMEN

Spermatogenesis defects are important for male infertility; however, the etiology and pathogenesis are still unknown. Herein, we identified two loss-of-function mutations of STK33 in seven individuals with non-obstructive azoospermia. Further functional studies of these frameshift and nonsense mutations revealed that Stk33-/KI male mice were sterile, and Stk33-/KI sperm were abnormal with defects in the mitochondrial sheath, fibrous sheath, outer dense fiber, and axoneme. Stk33KI/KI male mice were subfertile and had oligoasthenozoospermia. Differential phosphoproteomic analysis and in vitro kinase assay identified novel phosphorylation substrates of STK33, fibrous sheath components A-kinase anchoring protein 3 and A-kinase anchoring protein 4, whose expression levels decreased in testis after deletion of Stk33. STK33 regulated the phosphorylation of A-kinase anchoring protein 3/4, affected the assembly of fibrous sheath in the sperm, and played an essential role in spermiogenesis and male infertility.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Infertilidad Masculina , Humanos , Masculino , Ratones , Animales , Proteínas de Anclaje a la Quinasa A/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Espermatogénesis/fisiología , Cola del Espermatozoide/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/metabolismo , Flagelos/metabolismo
19.
Drug Dev Res ; 84(6): 1072-1084, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37203301

RESUMEN

Pathological cardiac hypertrophy is the result of a prolonged increase in the workload of the heart that activates various signaling pathways such as MAPK pathway, PKA-dependent cAMP signaling, and CaN-NFAT signaling pathway which further activates genes for cardiac remodeling. Various signalosomes are present in the heart that regulates the signaling of physiological and pathological cardiac hypertrophy. mAKAPß is one such scaffold protein that regulates signaling pathways involved in promoting cardiac hypertrophy. It is present in the outer nuclear envelope of the cardiomyocytes, which provides specificity of the target toward the heart. In addition, nuclear translocation of signaling components and transcription factors such as MEF2D, NFATc, and HIF-1α is facilitated due to the localization of mAKAPß near the nuclear envelope. These factors are required for activation of genes promoting cardiac remodeling. Downregulation of mAKAPß improves cardiac function and attenuates cardiac hypertrophy which in turn prevents the development of heart failure. Unlike earlier therapies for heart failure, knockout or silencing of mAKAPß is not associated with side effects because of its high specificity in the striated myocytes. Downregulating expression of mAKAPß is a favorable therapeutic approach toward attenuating cardiac hypertrophy and hence preventing heart failure. This review discusses mAKAPß signalosome as a potential target for cardiac hypertrophy intervention.


Asunto(s)
Insuficiencia Cardíaca , Remodelación Ventricular , Humanos , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Cardiomegalia/tratamiento farmacológico , Cardiomegalia/genética , Cardiomegalia/metabolismo , Miocitos Cardíacos/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Factores de Transcripción
20.
J Biol Chem ; 299(5): 104696, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37044218

RESUMEN

KDEL receptor (KDELR) is a key protein that recycles escaped endoplasmic reticulum (ER) resident proteins from the Golgi apparatus back to the ER and maintains a dynamic balance between these two organelles in the early secretory pathway. Studies have shown that this retrograde transport pathway is partly regulated by two KDELR-interacting proteins, acyl-CoA-binding domain-containing 3 (ACBD3), and cyclic AMP-dependent protein kinase A (PKA). However, whether Golgi-localized ACBD3, which was first discovered as a PKA-anchoring protein in mitochondria, directly interacts with PKA at the Golgi and coordinates its signaling in Golgi-to-ER traffic has remained unclear. In this study, we showed that the GOLD domain of ACBD3 directly interacts with the regulatory subunit II (RII) of PKA and effectively recruits PKA holoenzyme to the Golgi. Forward trafficking of proteins from the ER triggers activation of PKA by releasing the catalytic subunit from RII. Furthermore, we determined that depletion of ACBD3 reduces the Golgi fraction of RII, resulting in moderate, but constitutive activation of PKA and KDELR retrograde transport, independent of cargo influx from the ER. Taken together, these data demonstrate that ACBD3 coordinates the protein secretory pathway at the Golgi by facilitating KDELR/PKA-containing protein complex formation.


Asunto(s)
Proteínas de Anclaje a la Quinasa A , Aparato de Golgi , Proteínas de Anclaje a la Quinasa A/genética , Proteínas de Anclaje a la Quinasa A/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Retículo Endoplásmico/metabolismo , Aparato de Golgi/metabolismo , Transporte de Proteínas , Transducción de Señal , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA